WORLD METEOROLOGICAL ORGANIZATION

AGRICULTURAL METEOROLOGY

CAgM Report No. 66

AGROMETEOROLOGY OF THE PEARL MILLET

Prepared by

V. Mahalakshmi

(CAgM Rapporteur on Agrometeorology of the Pearl Millet)

WMO/TD - NO. 746

Secretariat of the World Meteorological Organization

Geneva, Switzerland

1996
“This distribution in this form does not imply endorsement by the Organization of the ideas expressed in the report”.
WORLD METEOROLOGICAL ORGANIZATION

AGRICULTURAL METEOROLOGY

CAgM Report No.

AGROMETEOROLOGY OF THE PEARL MILLET

Prepared by

V. Mahalakshmi

(CAgM Rapporteur on Agrometeorology of the Pearl Millet)

WMO/TD - No.

Secretariat of the World Meteorological Organization

Geneva, Switzerland

1996
TABLE OF CONTENTS

CHAPTER 1
INTRODUCTION .. 1
1.1 Taxonomy and origin ... 1
1.2 Breeding .. 1
1.3 Physiology .. 2

CHAPTER 2
ENVIRONMENT ... 3
2.1 Photoperiod .. 3
2.2 Temperature .. 3
 2.2.1 Vegetative growth .. 3
 2.2.2 Reproductive stage ... 4
2.3 Rainfall ... 4
2.4 Radiation .. 4
2.5 Evaporation .. 4
2.6 Windspeed .. 5

CHAPTER 3
WEATHER AND BIOTIC STRESSES 7
3.1 Downy mildew (*Sclerospora graminicola*) 7
3.2 Smut (*Tolyposporium penicillariae*) 7
3.3 Ergot (*Claviceps fusiformis*) .. 7
3.4 Rust (*Puccinia substriata*) .. 7
3.5 Striga ... 8
3.6 Insects and Pests .. 8
 3.6.1 Earhead caterpillar (Raghuva) 8
 3.6.2 Stem borer (Acigona ignefusalis) 8

CHAPTER 4
CONCLUSION .. 9

REFERENCES ... 11
AGROMETEOROLOGICAL INFORMATION FOR CEREAL CROP
Pearl Millet

CHAPTER 1
INTRODUCTION

Pearl Millet is a widely grown rainfed cereal crop in the arid and semi-arid regions of Africa and South Asia. It is the staple cereal crop in the subsistence agriculture in these arid and semi-arid regions. It is grown in 15 million ha in Africa and the grain yields average about 500 kg/ha. In the South Asian subcontinent it is grown in 11 million ha and the grain yields average about 650 kg/ha. In other continents it is grown under intensive cultivation as a forage crop. It has numerous advantages that have made it well adapted to these harsh environments; namely, its tolerance to high temperatures, drought, low fertile soils and high growth rates (Begg, 1965). Pearl millet is capable of producing good yield even under severe environmental conditions, which normally is unsuited for other grain crop. This is the reason why millet is usually referred to as "Camel" crop of the world. Complete failure of crop due to limited rainfall is much less frequent as compared with other crops. Millet is capable of producing significant yield using 200mm of moisture during the growing season (Cocheme and Franguié, 1967). It is commonly known as bulrush or cattail and mil aux chadelles. In Africa it is known as gero, mawiwa, souna, dukhn and sanio and in India, bajra and cumbu are a few of the many colloquial names (Andrews and Kumar, 1992).

1.1 Taxonomy and origin

Pearl millet belongs to the genus *Pennisetum* of the paniceae family. Its taxonomic history is extensively variable. It is currently known as *Pennisetum glaucum* (L.) R. Br. It was variously classified as *P. Americanum* (L.) Leake, *P. Typhoids* Stpl. And Hubb. and *P. Glaucum* (Brunken, 1977; de Wet, 1987).

The genus *Pennisetum* is well distributed throughout the tropics and subtropics. The cross fertile wild and weedy forms of the primary pool include sub-species *stenostachyum* and *manadii*. The secondary pool includes the species *purpureum*. Pearl millet was probably domesticated in Africa in Savannah south of Sahara and west of the Nile, possibly some 5000 years ago (Brunken et al., 1977) from *P. Fallax-P. Vioaceum*. These wild forms are still prevalent on the southern fringes of the Sahara (see Andrews and Kumar, 1992; de Wet et al., 1992). The tertiary pool contains many distantly related species of Pennisetum with various ploidy levels that do not normally interbreed with the pearl millet. The success of pearl millet as a cereal is due to the adaptive characters of its wild progenitors to heat and drought stress. Wild millets are typically desert type.

1.2 Breeding

Pearl millet is an annual, high tillering diploid (2n – 14) and naturally cross-pollinating protogynous crop. This floral biology has permitted various breeding methods for genetic enhancement of the crop. This ranges from population breeding methods to pedigree selection.

Several cytoplasmic male-sterile systems are available and the release of single cross hybrids for commercial use in a coarse cereal was in this crop in the early 1950s in India. Though the initial success of these hybrids was short lived due to their susceptibility to downy-mildew disease during the late 60's, this problem was overcome by the diversification in the male sterile lines. Genetic enhancement through the introduction of single cross hybrids and
improved population has played a major role in improving the grain yield productivity (yield ha\(^{-1}\)) of this crop in India. In Africa, there has been no improvement in productivity in the last three decades (Anand Kumar, 1993; Kelly and Rao, 1993). In a study, top-cross hybrids were found to be more responsive than their open pollinated parents in the low-yielding environments (Mahalakshmi et al., 1992; Bidinger et al., 1994). The suitability of top-cross hybrids (line x variety crosses) in West Africa as an alternative to single cross hybrids and open pollinated varieties is being evaluated.

1.3 Physiology

Pearl millet is C\(_3\) (phospho-enol-pyruvate carboxylating enzyme) species with very high photosynthetic rates and dry matter production (Begg, 1965). The crop stages are broadly divided into three growth phases: namely:

- **GS\(_1\)**: Growth stage one or sowing to panicle differentiation
- **GS\(_2\)**: Growth stage two or panicle initiation to flowering
- **GS\(_3\)**: Growth stage three or flowering to grain maturity.
CHAPTER 2
ENVIRONMENT

2.1 Photoperiod

Pearl millet is grown as a rainfed crop during the rainy season (June-Oct.) in India and West and Central Africa. Tailoring the life cycle of the crop to the length of the growing season is the basis of adaptation of pearl millet in these regions. This is achieved by photoperiod sensitivity. Pearl millet is a quantitative short-day crop where flowering is hastened under shorter day lengths (Bilquez, 1983; Burton, 1965). The crop phases, up to flowering, have been divided into juvenile phase: - time during which crop is not responsive to photoperiodic induction; floral induction phase: - the phase following juvenile phase where floral induction under inductive photo periods occur and floral morphogenesis phase: - the phase proceeding floral induction and is not influenced by photoperiod (Belliard et al., 1979).

These two major millet-growing zones of the world lie in different latitude zones, 11 to 14 °N in West and Central Africa and between 25 - 30 °N in north-west India. In both these zones, the length of the growing season varies from 10 to 18 weeks in duration (Kowal and Kassam, 1978; Virmani et al., 1982). In both these regions, the length of growing season is inversely related to the latitude and is more acute in west Africa, where season length changes markedly over a small range in latitude (Figure 1). Therefore, the roles of photoperiodic response differ in these regions. In West Africa, the onset of rains is highly variable between years while the end of rains is sharp (Kowal and Kassam, 1978). In such environments, photoperiodic control of flowering provides an opportunity to sow whenever the rains begin but ensures that flowering and grain filling occur when moisture regime is most favourable (Mahalakshmi and Bidinger, 1985).

2.2 Temperature

It has a base temperature around 12°C, an optimum temperature around 35°C and a lethal temperature around 45°C (Ong, 1983a; Ong, 1983b; Gregory, 1983; Khalifa and Ong, 1990). The germination rate of millet increases linearly with temperature from a base of about 10 to 12°C to a sharp defined optimum of 35°C and sharply declines to zero at 45 to 47°C (Gracia - Huidobro et al., 1982). Fig. 2 gives the root elongation of millet as a function of temperature. It appears that optimum temperature for root elongation is 32°C.

Increasing temperature increases the speed of germination and reduces the spread of population about the modal date, of both germination and emergence (Pearson, 1975). However, high temperatures (>45°C) and soil surface crusting following sowing may result in poor crop establishment due to seedling death (Soman et al., 1987). In West Africa, the problem is further complicated by sand blast that bury the seedling under the sand.

2.2.1 Vegetative growth

Rate of leaf production was accelerated at high temperatures (Pearson, 1975) although the number of leaf primordia on the main stem apex did not change from 18 to 30°C (Theodorides and Pearson, 1981). Tillers appear sooner and they are formed more rapidly as temperature increases to about 25°C (Pearson, 1975; Ong, 1983a). Above 25°C the time of appearance of the first tiller does not change but there is a decline in the number of tillers (Begg and Burton, 1971; Ong, 1983a).
2.2.2 Reproductive stage

High temperature during flowering result in loss of pollen viability and can reduce the receptivity of stigmas and affect grain filling. Grain setting was optimum from 22-25°C and declined at temperatures below and above this optimum while grain mass steadily declined with increasing temperature from 19°C to 31°C (Ong, 1983b). Exposure of plants to prolonged periods of low temperature (<13°C) during the booting stage resulted in low grain set. This was due to low temperature induced sterility of floret and pollen grains (Fussell et al., 1980; Mashingaidze and Muchena, 1982).

2.3 Rainfall

Rainfall is the main source of moisture supply to the crop. The amount and distribution of rainfall are the most important factor limiting productivity. Poor soil moisture at sowing reduces seedling emergence leading to poor crop establishment. Farmers often resow with subsequent rains. Intermittent break in rainfall is a common feature but the crop is well adapted to water deficits during the GS2 period (Mahalakshmi et al., 1987). Early flowering and grain filling stages are the most sensitive stages to water deficits (Mahalakshmi and Bidinger, 1985; Mahalakshmi et al., 1987). Both timing of stress in relation to flowering and intensity of stress determine the reduction in grain yield (Mahalakshmi et al., 1988). Most of the variation among environments in a multi-location trial was due to the availability of water at flowering and variation among genotypes was dependent on the temperature during early grain filling.

Agricultural production in rainfed areas depends heavily on the total amount and number of rain-days in the growing season. Under the conditions where millet crops are cultivated, evaluation of rainfall in terms of probability estimates instead of arithmetic means is desirable, since, in most cases, rainfall becomes the key climatological element to determine the suitability of a locality for millet production.

The rainfall derived parameters such as onset of rains, cessation of rains, duration of the rainy season, sowing rains, rainfall probabilities for specific phenological phases (sowing time, flowering, harvesting, etc.) And others can be calculated using the INSTAT programme; which can be run in IBM compatible microcomputers. Rainfall probabilities can be estimated using the gamma distribution since it fits better than other mathematical distribution to observe rainfall data.

2.4 Radiation

Solar radiation is the most important and basic asset in crop production. The amount and distribution of incoming radiation sets the limits for dry matter production. Radiation has two roles in crop production, namely the photosynthetic active radiation (PAR) for photosynthesis and the thermal conditions for physiological processes. Though there are no reports on the effects at different levels of incoming radiation on productivity of pearl millet, this resource is generally not a limiting factor in tropics. Interception of incoming radiation by crop canopy is a limiting factor. Poor crop establishment leading to poor canopy development results in poor interception of the incoming radiation.

2.5 Evaporation

Evaporation related to the evaporative power of the air and the loss of water as vapour into the atmosphere from an open water surface. Evapotranspiration, or the combined transfer
of water from soil by evaporation and from plant by transpiration, is dependent on water availability in the soil, evaporative demand of the atmosphere, crop cover, and stage of growth. Evaporation is dependent on air temperature, wind speed and drying power of the atmosphere; it can be calculated from these meteorological parameters using Penman (1948) equation. One of the main difficulties for the estimation of evaporation using Penman equation in both West Africa and India is not in the computational difficulties but with the ready availability of the input meteorological parameters. Simplified procedures and formulae requiring fewer readily available meteorological parameters are available for India (Mahalakshmi et al., 1993) and West Africa (Anyadike, 1987).

2.6 Windspeed

Little is known on the effect of wind speed on crop production. In West Africa, heavy wind storms associated with thunderstorms are common during the crop season. These winds are laden with dust particles that reduce the visibility and incoming amount and quality of radiation, and form deposits on leaf surface that may affect photosynthesis. Severe winds during seedling stage, bury seedling and lead to poor crop establishment.
CHAPTER 3
WEATHER AND BIOTIC STRESSES

Downy mildew sometimes referred to as the "green ear", smut, ergot and rust are the major diseases of this crop in both continents.

3.1 Downy mildew \textit{(Sclerospora graminicola)}

Downy mildew is the most destructive of the diseases. The sources of primary inoculum for this disease are the soil-borne sexual spores or oospores that can survive in soil for several years. The thick oospore wall protects them from desiccation and serves as an impermeable membrane. There are no published reports on the effects of weather parameters on oospores longevity or their germinability. The asexual spores (sporangia) are the secondary source of inoculum. During cool and humid nights, the systemically infected leaves produce abundant sporangia on the abaxial surface (Singh et al., 1993). However, the hot and dry environmental conditions favourable for pearl millet growth, may not be conducive for sporangial production and survival (Singh et al., 1993). Temperature affects the size of sporangia (Sing et al., 1987). Sporangia liberate zoospores at a wide temperature range (10 to 45°C) and the liberation is maximum at 30°C. The infectivity of zoospores is longer at lower temperature (Sing and Gopinath, 1990). Light does not affect sporangial production (Singh et al., 1987).

3.2 Smut \textit{(Tolyposporium penicillariae)}

Smut is a panicle disease and the primary source of inoculum is spore balls (teletospires) in soil from the previously infected crop and surface contaminated seeds used for sowing which infects young emerging stigmas (Thakur and King, 1988a). Smut is relatively less damaging than downy mildew. Moderate temperatures (20-35°C) rather than cool temperatures, high relative humidity (> 80%) and long days seem to favour disease development (Kousik et al., 1988; Thakur, 1990a; Thakur, 1990b). The secondary spread of the disease within a crop is minimal. This is due to the prolonged latent period for spore production by which time flowering is completed within a crop and pollination interferes with infection of the florets by pathogen spores (Thakur et al., 1983).

3.3 Ergot \textit{(Claviceps fusiformis)}

Ergot is also a panicle disease. The primary source of inoculum is sclerotia in the soil from the previously infected crop or contaminated seeds used for sowing. Disease development and spread depend on the prevailing weather during flowering and the timely availability of pollen (Thakur and King, 1988b). High relative humidities (> 80%), an overcast sky with reduced radiation levels, frequent drizzling rains and cooler nights (18-20 °C) promote disease development (Thakur, 1990a). Secondary spread of the disease occurs through the numerous macroconidia present in the honeydew produced in the infected florets. The latent period (time from primary infection to conidial production) is reduced under 30°C dday/25°C night temperatures and panicle wetness (Thakur et al., 1991).

3.4 Rust \textit{(Puccinia substriata)}

Rust is a foliar disease. Occurrence of the disease at seedling stage can result in substantial losses in grain and fodder yield and fodder quality. Cooler temperatures and high relative humidity favour disease development (Singh and King, 1991).
3.5 Striga

Millet is attacked by *Striga asiatica* in India and *hermonthica* in Africa. Low soil fertility and low rainfall favour *Striga* infestation. Soil temperature at 2 cm depth affected germinability and viability of striga seeds (Osman et al., 1989; Osman et al., 1991).

3.6 Insects and Pests

Pearl millet has relatively few menacing insect pest problems. In the Asia sub-continent, white grubs are the major pests (Rachie and Majumdar, 1980). In West Africa, there is a range of insect pests that damage the crop leading to economic losses but the major ones are the earhead caterpillar (*Raghuva*), stem borer (*Acigona*), midge (*Germysia penniset*) and several species of grasshoppers.

3.6.1 Earhead caterpillar (*Raghuva*)

Pest surveys in West Africa indicate that crop was devastated by these head caterpillar infestations. The numbers of surviving diapausing pupae in the soil emerge was associated with soil temperature and moisture at different depths from November to May. There was also a close relationship between moth emergence and onset of rain and soil moisture was the key factor in diapause termination. The increase in soil moisture content and lowering of soil temperature in the upper soil layers was associated with earlier termination of diapausing pupae in this soil layer (Nwanze and Sivakumar, 1990).

3.6.2 Stem borer (*Acigona ignefusalis*)

The time of onset of rainfall and the total amount of rainfall during the crop season was related to the stem borer population (Nwanze, 1989). A knowledge of diapausing populations and the relationship between insects’ pests and rainfall during the season in regions where sporadic outbreaks are common, there is need to integrate the weather parameters with population dynamics of the pests.
CHAPTER 4

CONCLUSION

Unlike in other cereals, research on the effect of weather variables on growth and development of this crop is rather limited. In the past, attempts have been made to develop crop models for this crop. Most crop simulation models, assume no biotic stress. The growth and development of the crop and the spread of pathogens and pests are driven by weather variables. When weather is optimum for pathogen or pest development and spread leading to epidemic of disease or pest, sporadic outbreaks of pests and disease occur. It is therefore essential that quantified information on weather and the development of diseases are collected and modeled. Only models can help in forecasting disease or pest epidemics and assist farmers and governments to choose necessary contingent measures to combat them.
REFERENCES

Figure 1: Length of the growing season at different latitudes in India and West Africa (Mali)
(Source of data Virmani et al., 1982 and Sivakumar et al., 1984)
Figure 2. Germination rate of pearl millet (cv BK-560) as a function of temperature (Peacock, 1982)