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Abstract 
 
Upper Klamath Basin water supplies in Oregon and California, USA, have been the focus of 
many competing uses and needs for the past one hundred years.  Water supplies have been 
forecasted in the basin since the 1930s based on the relationship of streamflow with the seasonal 
snowpack and climate. In 2001, the 5th driest year on record, agricultural irrigation was curtailed 
in much of the basin, with the little available water allocated to support the survival of 
endangered and threatened fish.  The lack of available irrigation water generated a large outcry in 
the local and national agricultural community, prompting collaborative research beginning in 
2003 to improve the accuracy of the water supply forecasts, which would enhance water 
management decision-making in the watershed.  The focus of the research described in the 
present paper was to review the current statistical forecasting techniques and investigate other 
statistical techniques as well as research additional data variables to use in the water supply 
prediction models.    

 
Introduction 

 
USDA Natural Resources Conservation Service (NRCS) has been forecasting water supplies in 
the Klamath Basin since the 1930s.  The NRCS forecasts water supplies at over 700 other stream 
gauge stations and reservoir inflow points throughout the western United States.  The 
relationship between winter snowpacks and the resulting spring runoff spawned the development 
of statistically based water supply forecast methods beginning in the early 1900s.  Water supply 
forecasts for the western United States have been traditionally requested and used by federal, 
state, and local water managers for flood control, irrigation, hydropower generation, and 
municipal use.  Water supply forecast use has expanded significantly in the last decade to include 
fish and wildlife management and winter and summer recreation. 
 
Most irrigation water in the Klamath Basin is allocated and delivered by the U.S. Bureau of 
Reclamation (BOR), which operates three reservoirs in the basin (Upper Klamath Lake, Clear 
Lake, and Gerber Reservoir).  The BOR supplies water to irrigate approximately 810 km2, which 
varies annually (Risley, et al., 2005). 
 
In the 1990s, the U.S. Fish and Wildlife Service (USFWS) designated two Upper Klamath Basin 
fish species endangered:  Lost River Sucker (Deltistes luxatus) and Short Nose Sucker 
(Chasmistes brevirostris).  The Coho salmon in the Klamath River was also listed as threatened 
by the National Oceanic and Atmospheric Administration (NOAA) Fisheries Service.  Water 
management plans were developed to provide the appropriate amount of water to improve these 
fish populations. 
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In 2001, the 5th driest year on record (based on data from 1901-2006), a very limited supply of 
water was available for irrigation, power, and endangered fish needs. Based on the April 2001 
water supply forecast, the BOR determined that to comply with the Endangered Species Act, no 
irrigation water would be allocated to the farmers in the BOR Project, though other farmers in 
the area were able to irrigate.  This decision caused many protests throughout the local, state, and 
national agricultural community and received the attention of the White House and the President 
of the United States.  The resulting legislation provided some federal funds to enhance and 
conserve water supplies in the basin.  The immediate actions included emergency well drilling, 
water conservation as well as long-term projects such as irrigation efficiency improvements and 
vegetation management.  There was also funding to support improvements in water supply 
predictions, the basis for water conservation and management decisions.  These improvements 
include additional data collection stations, hydrologic model development, and a study of the 
accuracy of the statistical water supply forecasts and ways to improve them.  There is also a 
continuing effort to educate the water managers and the public on the use and limitations of 
water supply forecasts. 
 
Geography 
 
The Upper Klamath Basin encompasses approximately 20,720 km2 and is located in south-
central Oregon and northeastern California.  The Klamath River originates at Upper Klamath 
Lake in Oregon and flows in a southwesterly direction, draining the Cascade Mountain Range on 
the west and smaller mountains on the north and east sides of the basins, and discharges to the 
Pacific Ocean.  The Oregon part of the basin is approximately 14,500 km2 (Lea and Pasteris, 
2004). 
 
Data Network 
 
The Klamath Basin data collection network used to generate water supply forecasts is distributed 
throughout the mountainous areas of the basin as shown in Figure 1.  The primary source for the 
climate and snowpack data used for water supply forecasting is the SNOw TELemetry 
(SNOTEL) network operated by the NRCS.  In the Klamath Basin, the SNOTEL network 
consists of 19 remote stations that collect hourly precipitation, snow water equivalent (SWE), 
snow depth, and temperature data.  Six SNOTEL sites have been augmented to provide soil 
moisture and soil temperature measurements at five different soil depths, and four of these sites 
also measure solar radiation, wind, and relative humidity. 
 
In addition, six manually measured snow courses provide SWE and snow depth data once a 
month, during January through June.  A snow course is a permanent site where these manual 
snow measurements are taken by trained observers near the first of the month during the winter 
and spring. Generally, the courses are about 1,000-feet long and are situated in small meadows 
protected from the wind.  The observers take measurements along a set transect at regular 
intervals, averaging the measurements over the course.  There are also four aerial markers in the 
basin consisting of poles with crossbars that indicate snow depth, which are read from a small 
airplane once a month, during this same period.  The single SCAN (Soil Climate Analysis 
Network) site provides soil temperature, soil moisture, and weather data elements but does not 



 80

measure snow due to its location in an agricultural field at a lower elevation where snow is 
ephemeral.   
 

Precipitation from five low elevation National Weather Service (NWS) cooperative observer 
sites is also used in water supply forecasts.  The five water supply forecast points within the 
basin are located at long-term stream gauges that provide historic and current streamflow data 
collected by the BOR, U.S. Geological Survey (USGS) and the Oregon Department of Water 
Resources. 
 
Water Supply Forecasting 
 
A water supply forecast is the expected volume of water available during a specific period of 
time at a specific location.  Examples include lake inflow, reservoir inflow or flow at stream 
gauge over a multi-month time step or season. In the western United States, statistical forecasts 
are also made for annual events such as peak flow and date of the peak and for recession (low 
flow) dates and stage.  Seasonal water supply forecasts are used for water management decision- 
making such as flood management, irrigation, municipal use, wildlife and fish, hydropower, and 
recreation. The seasonal volume forecasts are often used as an input for daily water management 
models. 
 

 
Figure 1. Upper Klamath Basin hydromet network and water supply forecast points. 
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Water supply forecasting in the Klamath Basin is based on statistical models relying on a linear 
regression of historic monthly hydroclimatic input variables (SWE, precipitation, streamflow) 
against historic observed streamflow volume.  These regression equations are developed using 
the principal components statistical method developed by Garen (1992).  The principal 
components method was developed to account for the intercorrelation among predictor variables 
(which especially affects precipitation and snow observations for a given time period among 
stations). 
 
Once an initial set of candidate stations and climate elements has been selected, screening is 
done both manually and with the help of an automated search routine.  A final set of predictor 
variables is selected balancing statistical optimality (i.e., minimizing the standard error) with the 
selection of hydrologically meaningful variables.  Consistency in the variable usage from month 
to month during the forecast season is important to minimize forecast fluctuations and to ensure 
physical interpretability of the forecasts.  As a robust measure of model accuracy, a jackknife test 
is performed.  The test is an iterative procedure of removing each year’s observations one at a 
time, recomputing the model’s regression coefficients, predicting the removed year, then 
returning that year’s observation and removing the next one.  This is repeated until a series of 
predictions is obtained, each of which is from a model that did not include the respective year in 
the calibration.  This test is used to evaluate each candidate model, and the standard error 
calculated from the jackknife predictions is used to develop confidence bounds around forecasts.  
The statistical models are normally developed with 20 to 40 years of data to ensure the 
robustness and physical representativeness of the statistical relationships.  Each monthly forecast 
model is developed independently.  Thus, a given month’s forecast is not dependent on the 
previous month’s forecast, although consistency is maintained by using similar data stations 
from month to month.  
 
Artificial Neural Network Model 
  
As one experiment to improve water supply forecast accuracy, the USGS tested the Artificial 
Neural Network (ANN) model (Figure 2).  This statistical method is a flexible mathematical 
structure capable of describing complex nonlinear relationships between input and output data 
sets that are typically found in natural systems (Risley, et al., 2005).  The USGS also tested the 
autoregressive artificial neural network using past streamflow to predict future streamflow 
volumes for 1979 through 2003 in a weekly time step (Risley, et al., 2005).  In both of these 
techniques, forecasts were developed for the five forecast points in the Klamath Basin for the 
months of January through June and were compared to the principal component method.  In the 
comparison, the principal components model performed better at all forecast points in April, 
though there were mixed results in other months, suggesting there would be little to gain if the 
ANN method were adopted. 
 
New Variables for Statistical Models 
 
Several new variables were evaluated for their potential in improving water supply forecast 
accuracy with principal components regression models.  These variables include those 
representing groundwater conditions (wells and springs), the average monthly temperature 
during the spring season to assist in describing snowpack melt conditions, a new climate 
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teleconnection index (Trans-Niño Index) to indicate climate conditions for the upcoming winter, 
and the basin mean areal precipitation.  These variables were analyzed in conjunction with the 
current variables used in the forecast equation (SWE, precipitation, streamflow). 

 
Figure 2. An example of a neural network model architecture with three input layers,  

five hidden later nodes, and a single output. (Risely, et al., 2006). 
 
 
Wells and Springs 
 
From other studies in the Klamath Basin, it is known that groundwater flow and storage are 
significant components of the basin hydrology due to its volcanic nature.  Data from wells and 
springs in the basin were reviewed, and it was determined that one Oregon Department of Water 
Resources observation well had a long-term dataset that could be edited and used, and one 
Oregon Department of Water Resources streamflow gauge that measures a large spring shortly 
after it begins to flow had a data set that was robust and quality controlled.  Both of these data 
sets provide good correlation to the spring and summer streamflow in the Klamath basin.  The 
single correlation between the spring streamflow at Fall River to the Williamson River 
streamflow ranged from 0.28 to 0.59.  The correlation was better in the forecasts for later season 
summer flows, which is logical in that the springs would be best correlated with summer 
baseflow.  The well level correlation to the Williamson streamflow was also good at -0.45 to  
-0.52, as the depth to groundwater is another good indication of baseflow conditions.   
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Spring Season Temperature 
 
While spring temperature is a critical element in physically based models, it has rarely been used 
in statistical models.  It was surmised that the temperature during the months of March, April, 
and May would be of help in forecasting streamflow by indexing snowpack ripeness, melt rates, 
and evapotranspiration losses.  Obviously, this is a negative relationship, where warmer 
temperatures are associated with lower streamflow.  The only station with a sufficiently long 
temperature record was Crater Lake National Park Headquarters, located at the northwestern 
edge of the basin.  It was found that the correlation coefficients between average temperature 
during March, April, and May and the subsequent seasonal streamflow volume were in the range 
-0.26 to -0.53.  Of the three months, March provided the best correlation to subsequent 
streamflow.  These variables, then, are useful for improving the accuracy of forecasts issued in 
the months of April through June.   
 
Climate Indices 
 
There are several standard climate indices that are used in water supply forecasting in the 
western United States and elsewhere.  The Southern Oscillation Index (SOI) is used in some 
parts of the Pacific Northwest, the northern Rocky Mountains, and the Southwestern states of 
Arizona and New Mexico.  There is a region between these two areas that does not have a strong 
correlation with the SOI, and the Klamath Basin falls on the edge of this area.  The Pacific 
Decadal Oscillation (PDO) is also not well correlated, but it is useful in identifying decadal-scale 
climate regimes.  A new index, the Trans-Niño Index (TNI), was the focus of our work.  The 
TNI, first published by Trenberth and Stepaniak (2001), is the standardized equatorial sea 
surface temperature (SST) gradient between the Niño 1+2 and Niño 4 regions (Figure 3).  The 
evaluation was limited to 1980-2004 to align with the current climate regime as defined by the 
PDO.  The TNI during the fall and early winter provides a good correlation (r of approximately 
0.7) to streamflow in this current warm PDO phase.  Recent work has shown that there is a broad 
regional pattern of TNI correlation to streamflow (Kennedy et al., 2005). 
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Mean Areal Precipitation 
 
Mean areal precipitation was calculated as spatial averages derived from monthly time series 
grids estimated with the Parameter-Regression on Independent Slopes Model (PRISM) (Daly et 
al., 1994; http://www.ocs.orst.edu/prism).   
 
The monthly mean areal precipitation data series derived from PRISM grids were compared to 
the individual station data series.  The correlations of each month’s data to the subsequent April-
September streamflow for the Williamson and Sprague sub-basins are shown in Figures 4 and 5.  
These figures indicate that the mean areal precipitation derived from the PRISM grids have 
better correlations with streamflow overall than any individual station.  Individual stations may 
have a better correlation for one or more months, but for the season, the more robust and 
consistent correlation of the areal precipitation is preferred. 

                                     
Figure 3. The TNI is the standardized equatorial sea surface temperature (SST) gradient between  

Niño 1+2 and Niño 4 regions (Trenberth and Stepaniak, 2001). 
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Figure 4.  The correlation of the monthly mean areal precipitation and individual stations with April 

through September streamflow volume in the Williamson subbasin. 
 

 

 
Figure 5. The correlation of monthly mean areal precipitation and individual stations with April 

through September streamflow volume in the Sprague subbasin. (Kennedy, et al., 2005). 
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Conclusion 
 
Forecasting future water supplies continues to be the primary planning tool for water resource 
management in the western United States and especially in the Klamath Basin.  There will 
continue to be emphasis on improving the forecast accuracy for better decision making for the 
multiple and often conflicting water resource needs.  This is complicated by unique basin 
characteristics, extreme weather events, and changing climate conditions.  
 
Snowpack, precipitation, and streamflow have been long standing good predictors of future 
streamflow.  They will continue to be the mainstay of statistical forecasting in the western United 
States.  This study examined several new variables that improve forecast accuracy, and have 
potential for use in statistical streamflow forecasting models beyond the basin under study.  
These variables include groundwater data (wells and springs), spring season temperature, climate 
teleconnection indices (especially the Trans-Niño Index), and mean areal precipitation derived 
from spatial grids.  The groundwater variables provide long- term, multi-seasonal conditions of 
the basin hydrology and the baseflow characteristics.  The temperature and mean areal 
precipitation variables are related to the current weather, and they improve our knowledge of the 
status of the snowpack and resulting streamflow in the basin.  The Trans-Niño Index provides a 
much needed early prediction of the future weather expected in the basin.  Early season forecasts 
allow additional time for the implementation of conservation and mitigation measures to offset 
any water shortages or surplus.  All of these variables have a good correlation to the streamflow 
period of interest and together provide an increase in forecast accuracy.  The forecast techniques 
and variables used here may also have applicability in other basins where hydrometeorological 
and climate variables contain sufficient information to make useful streamflow forecasts. 
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